2,697 research outputs found

    Translation invariant time-dependent solutions to massive gravity

    Full text link
    Homogeneous time-dependent solutions of massive gravity generalise the plane wave solutions of the linearised Fierz-Pauli equations for a massive spin-two particle, as well as the Kasner solutions of General Relativity. We show that they also allow a clear counting of the degrees of freedom and represent a simplified framework to work out the constraints, the equations of motion and the initial value formulation. We work in the vielbein formulation of massive gravity, find the phase space resulting from the constraints and show that several disconnected sectors of solutions exist some of which are unstable. The initial values determine the sector to which a solution belongs. Classically, the theory is not pathological but quantum mechanically the theory may suffer from instabilities. The latter are not due to an extra ghost-like degree of freedom.Comment: 31 page

    Translation invariant time-dependent solutions to massive gravity II

    Full text link
    This paper is a sequel to arXiv:1310.6560 [hep-th] and is also devoted to translation-invariant solutions of ghost-free massive gravity in its moving frame formulation. Here we consider a mass term which is linear in the vielbein (corresponding to a β3\beta_3 term in the 4D metric formulation) in addition to the cosmological constant. We determine explicitly the constraints, and from the initial value formulation show that the time-dependent solutions can have singularities at a finite time. Although the constraints give, as in the β1\beta_1 case, the correct number of degrees of freedom for a massive spin two field, we show that the lapse function can change sign at a finite time causing a singular time evolution. This is very different to the β1\beta_1 case where time evolution is always well defined. We conclude that the β3\beta_3 mass term can be pathological and should be treated with care.Comment: 19 pages, 1 figur

    Deformations of Differential Calculi

    Full text link
    It has been suggested that quantum fluctuations of the gravitational field could give rise in the lowest approximation to an effective noncommutative version of Kaluza-Klein theory which has as extra hidden structure a noncommutative geometry. It would seem however from the Standard Model, at least as far as the weak interactions are concerned, that a double-sheeted structure is the phenomenologically appropriate one at present accelerator energies. We examine here to what extent this latter structure can be considered as a singular limit of the former.Comment: 11 pages of Late

    The Need to Support of Data Flow Graph Visualization of Forensic Lucid Programs, Forensic Evidence, and their Evaluation by GIPSY

    Full text link
    Lucid programs are data-flow programs and can be visually represented as data flow graphs (DFGs) and composed visually. Forensic Lucid, a Lucid dialect, is a language to specify and reason about cyberforensic cases. It includes the encoding of the evidence (representing the context of evaluation) and the crime scene modeling in order to validate claims against the model and perform event reconstruction, potentially within large swaths of digital evidence. To aid investigators to model the scene and evaluate it, instead of typing a Forensic Lucid program, we propose to expand the design and implementation of the Lucid DFG programming onto Forensic Lucid case modeling and specification to enhance the usability of the language and the system and its behavior. We briefly discuss the related work on visual programming an DFG modeling in an attempt to define and select one approach or a composition of approaches for Forensic Lucid based on various criteria such as previous implementation, wide use, formal backing in terms of semantics and translation. In the end, we solicit the readers' constructive, opinions, feedback, comments, and recommendations within the context of this short discussion.Comment: 11 pages, 7 figures, index; extended abstract presented at VizSec'10 at http://www.vizsec2010.org/posters ; short paper accepted at PST'1

    On Tachyon kinks from the DBI action

    Full text link
    We consider solitonic solutions of the DBI tachyon effective action for a non-BPS brane in the presence of an electric field. We find that for a constant electric field E~≤1\tilde E\le 1, regular solitons compactified on a circle admit a singular and decompactified limit corresponding to Sen's proposal provided the tachyon potential satisfies some restrictions. On the other hand for the critical electric field E~=1\tilde E=1, regular and finite energy solitons are constructed without any restriction on the potential.Comment: proceedings of the second string phenomenology conference, Durham, 30th July to 4th August 200

    Detailed gravity anomalies from GEOS-3 satellite altimetry data

    Get PDF
    A technique for deriving mean gravity anomalies from dense altimetry data was developed. A combination of both deterministic and statistical techniques was used. The basic mathematical model was based on the Stokes' equation which describes the analytical relationship between mean gravity anomalies and geoid undulations at a point; this undulation is a linear function of the altimetry data at that point. The overdetermined problem resulting from the excessive altimetry data available was solved using Least-Squares principles. These principles enable the simultaneous estimation of the associated standard deviations reflecting the internal consistency based on the accuracy estimates provided for the altimetry data as well as for the terrestrial anomaly data. Several test computations were made of the anomalies and their accuracy estimates using GOES-3 data

    Applications of satellite and marine geodesy to operations in the ocean environment

    Get PDF
    The requirements for marine and satellite geodesy technology are assessed with emphasis on the development of marine geodesy. Various programs and missions for identification of the satellite geodesy technology applicable to marine geodesy are analyzed along with national and international marine programs to identify the roles of satellite/marine geodesy techniques for meeting the objectives of the programs and other objectives of national interest effectively. The case for marine geodesy is developed based on the extraction of requirements documented by authoritative technical industrial people, professional geodesists, government agency personnel, and applicable technology reports

    The significance of the Skylab altimeter experiment results and potential applications

    Get PDF
    The Skylab Altimeter Experiment has proven the capability of the altimeter for measurement of sea surface topography. The geometric determination of the geoid/mean sea level from satellite altimetry is a new approach having significant applications in many disciplines including geodesy and oceanography. A Generalized Least Squares Collocation Technique was developed for determination of the geoid from altimetry data. The technique solves for the altimetry geoid and determines one bias term for the combined effect of sea state, orbit, tides, geoid, and instrument error using sparse ground truth data. The influence of errors in orbit and a priori geoid values are discussed. Although the Skylab altimeter instrument accuracy is about + or - 1 m, significant results were obtained in identification of large geoidal features such as over the Puerto Rico trench. Comparison of the results of several passes shows that good agreement exists between the general slopes of the altimeter geoid and the ground truth, and that the altimeter appears to be capable of providing more details than are now available with best known geoids. The altimetry geoidal profiles show excellent correlations with bathymetry and gravity. Potential applications of altimetry results to geodesy, oceanography, and geophysics are discussed
    • …
    corecore